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Particle dispersion in an axisymmetric jet is analysed numerically by following 
particle trajectories in a jet flow simulated by discrete vortex rings. Important global 
and local flow quantities reported in experimental measurements are successfully 
simulated by this method. 

The particle dispersion results demonstrate that the extent of particle dispersion 
depends strongly on y,, the ratio of particle aerodynamic response time to the 
characteristic time of the jet flow. Particles with relatively small yT values are 
dispersed a t  approximately the fluid dispersion rate. Particles with large y, values are 
dispersed less than the fluid. Particles a t  intermediate values of y, may be dispersed 
faster than the fluid and actually be flung outside the fluid mixing region of the jet. 
This result is in agreement with some previous experimental observations. As a 
consequence of this analysis, it is suggested that there exists a specific range of 
intermediate y, a t  which optimal dispersion of particles in the turbulent mixing layer 
of a free jet may be achieved. 

1. Introduction 
Particle dispersion by turbulent shear flows is an intrinsic part of many important 

technological processes. Typical examples include the dispersion of liquid fuel 
droplets in gas combustors and the mixing of coal particles by the input jets of coal 
fired power plants. In many of these processes the dispersion of the particles is a 
controlling factor in the eficiency and the stability of the process. 

The majority of previous predictive efforts involving particulate dispersion in 
turbulent shear flows have employed flow models involving only the time average 
properties of the turbulence or have treated the turbulent flow as a random field 
(Crowe 1982). However, recent developments in the understanding of both bounded 
and free turbulent shear flows have shown that quasi-orderly structures can control 
the dynamics of the flow. Reviews of these results have been written by Ho & Huerre 
(1984) and Cantwell (1981). For the case of free shear flows such as mixing layers and 
jets it has also been shown, as discussed by Ho & Huerre (1984) that external forcing 
techniques can be used to control the global development of these flows. 

These developments in the understanding of turbulent shear flows have important 
implications concerning the modelling of particle dispersion in these flows. Recently, 
it was suggested by Crowe, Gore & Troutt (1985) that particle dispersion in free shear 
layers might be strongly dependent on the timescale of the large organized structures 
in the flow. 

To explore the connection between the organized flow structures and the particle 
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dispersion process (Crowe et ul. 1985), previous experimental results from several 
particle dispersion experiments were evaluated by plotting the particle dispersion as 
a function of a timescale ratio defined from the particle aerodynamic response time 
and a timescale related to the large turbulent structures associated with each flow. 

The aerodynamic response time of a particle is given by T~ = p p  d; / lSp  where pp 
is the particle density, d, is the particle diameter and p is the fluid viscosity. This 
quantity represents the time required by a particle, released from rest in a uniform 
flow, to reach 63% of the flow velocity assuming Stokes drag law is applicable. It is 
simply a measure of the aerodynamic responsiveness of a particle. The characteristic 
timescale for the large vortex structures in the mixing layer of a free jet is rigorously 
defined by T~ = S(x ) /U(x )  where 6(x) is the measure of the local thickness of the jet 
mixing layer which increases as the mixing layer grows and U ( x )  is the characteristic 
velocity for the mixing layer. Without losing the physical meaning, a constant single 
parameter, T~ = D/U,, is chosen in this analysis for engineering applications, where 
D is the diameter of the pipe which issues the jet and U ,  is the centreline velocity of 
the jet a t  the pipe exit. 

The ratio of the two times, y, = TA/rF,  should characterize the effectiveness of 
the large-scale structures for moving particles laterally in the mixing region. For 
T ~ / T ~  % 1, the particles will not have sufficient time to respond to the large vortex 
structures and will move in nearly rectilinear path. In  this case the flow spreading 
rate will be larger than the lateral dispersion rate of the particles. For TA/rF 4 1 ,  the 
particles have sufficient time to respond to the changing velocity field of large eddies 
and should disperse laterally with the spreading rate of the fluid mixing layer. On the 
other hand, for the condition rA/TF - 0 ( 1 )  the large organized vortices may be able 
to temporarily capture the particles and fling them beyond the fluid momentum 
mixing region giving rise to a lateral particle dispersion rate greater than the 
spreading rate of the mixing layer. 

Crowe et ul. (1985) plotted previous experimental results which indicate that 
enhanced particle dispersion was apparent a t  intermediate values of the timescale 
ratio parameter. In  addition average particle dispersion rates greater than the 
average turbulent momentum spreading rate were also indicated a t  these 
intermediate timescales. These results imply that the organized turbulent structures 
produced by free shear flows may have the ability to fling intermediate scale particles 
outside the turbulent flow region. Although this phenomena had been noted 
previously by experimentalists (cf. Yule 1980) no satisfactory explanation of the 
mechanism of this phenomena had been previously put forward. 

To examine this physical concept in a more quantitative manner a simple 
inviscid analytical model, a distributed vortex solution (Stuart 1967), was used to 
simulate the shear-layer flow by Crowe et al. (1985). Particles were then released a t  
various positions in the flow. A modified Stokes drag relation was used to determine 
the force on the particles. The results from this simple simulation were in good 
qualitative agreement with the experimental results, substantiating that particles in 
the intermediate timescale range could be dispersed most effectively by the shear 
flow. The numerical results also demonstrated that the intermediate scale particles 
could be dispersed beyond their initial fluid streamline indicating that particle 
dispersion rates greater than the flow spreading rate were also possible. Some initial 
efforts to model particle dispersion in plane mixing layers using spectral techniques 
have also been made by Gore et al. (1985). The results also support the physical model 
previously discussed. 
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Stuart’s (1967) flow simulation model involves a non-developing and non- 
interacting vortex distribution. This model is therefore only a very crude 
approximation to a real mixing layer. A simulation model which more closely 
produces the vortex dynamics of a real mixing layer, however, can be obtained using 
a discrete vortex element approach. The interactions between these vortex elements 
is then used to model the developing flow. This approach, first used extensively by 
Chorin (1973) has been employed with considerable success to model free shear flows. 
One of the earlier applications of this model was carried out by Ashurst (1977) in a 
two-dimensional simulation of the dynamics of the plane mixing layer. Ashurst’s 
results, obtained using several thousand vortex elements, were able to demonstrate 
the vortex clustering and pairing apparent in mixing-layer experiments. Ashurst’s 
results also show very good agreement with moderate-Reynolds-number experiments 
for mean flow development and for turbulence energy and shear stress profiles. 

To extend the previous efforts in simulating particle motion in free shear flows, a 
more realistic flow model is needed. Based on the previously noted work it was 
determined that the discrete vortex model would be an appropriate choice for this 
study. The geometry selected was that of an axisymmetric jet, since that flow is most 
commonly used for particle dispersion experiments. The most restrictive assumption 
in the employed model involves the two-dimensional axisymmetric constraint 
applied to the vortex elements. This assumption is reasonable for the first few 
diameters of the real jet flow. However downstream of the initial jet development 
three-dimensional distortions in the vortex rings become readily apparent in flow- 
visualization studies discussed by Ho & Huerre (1984). Modelling three-dimensional 
phenomena accurately is a complex numerical task which requires extensive 
computational resources. A discussion of the current status in three-dimensional 
vortex-element computational studies is given in a review by Leonard (1985). 
Although limited by the two-dimensionality assumption, the present efforts seem a 
reasonable next step in developing the numerical simulation of particle motion in free 
shear layers and can be considered a t  least a first-order approximation to an actual 
jet flow. 

The flow model employed here follows closely a previous study by Acton (1980) 
which used the discrete vortex model to simulate the large eddies in an axisymmetric 
jet. Acton’s time averaged results were found to be in reasonable qualitative 
agreement with previous experiments indicating that a considerable portion of the 
large vortex dynamics of jets can be modelled as axisymmetric. Details concerning 
the chosen flow model and the particle motion relations are presented in the following 
section. 

2. Mathematical modelling 
2.1. Modelling of the jet flow 

As discussed previously, the discrete vortex model employed by Acton (1980) was 
adopted for the flow simulation. The axisymmetric jet is assumed to form starting 
from the exit of a circular pipe into a still environment. The numerical simulation 
starts with the moment that the flow first leaves the exit of the pipe and follows the 
development of the ensuing jet. 

The basic assumptions used in the flow model are that the flow is inviscid and 
incompressible and constrained to be instantaneously axisymmetric. The inviscid 
assumption is reasonable for modelling the large vortex structure motions since 
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FIGURE 1. Schematic of flow simulation geometry. 

numerous experiments in free shear flows have found the character of these 
structures to be relatively independent of Reynolds number. A discussion of the 
effect of Reynolds number on the development of free shear layers can be found in 
Ho & Huerre (1984). 

Based on the previous assumptions the vorticity transport equation becomes 
simply 

DCU 
- = ( 0 . V ) U .  
Dt 

Where o and u are vorticity and velocity vectors respectively. Since the governing 
equation includes no viscous diffusion of vorticity the flow can be modelled by a 
superposition of discrete vortex elements. For the chosen geometry these elements 
are given the form of axisymmetric ring vortices. A schematic of the flow simulation 
geometry is shown in figure 1. 

As each vortex element leaves the pipe exit it  is replaced a t  the upstream end of 
the pipe tube by a new element, such that the number of vortex rings in the pipe 
remain constant during the calculation. After the vortex rings are released from the 
circular pipe, their movement is determined from the velocity induced by all the 
other vortices in the flow and their own self-induced velocity. 

For a circular ring vortex of circulation strength r with its core centre a t  (x’, r’) as 
shown in figure 2 ,  the Stokes stream function at ( x , ~ )  is given by Lamb (1945) as 

r 
V ( x , r )  = - - ( g 1 + g 2 ) ( K ( a ) - E ( a ) ) ,  27c ( 2 )  

where 

1 

K(a)  = [ ((1-t2)(1-azt2))-~dt 
Jo 

(complete elliptic integral of the first kind), (60,) 

and 

E ( a )  = (1 - tz)-:( 1 - a2t2)f dt 
Jo 

(complete elliptic integral of the second kind). (6b )  
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FIGURE 2. A typical vortex ring in flow simulation. 

The induced downstream and radial velocity components are respectively 

1 iw i ay 
r ar r ax 

u ( x , r )  = ---, w(x,r) =--. 

Expanded, these relations give 

(7) 

and 

A curved vortex filament with a non-zero cross-sectional area has a finite self- 
induced velocity. This self-induced velocity, which is parallel to the axis of the ring 
vortex or more specifically the binormal direction, is given by Lamb (1945) based on 
the Kelvin formula for the velocity of a circular vortex ring of small cross-section in 
a perfect fluid, as 

where b is the radius of the cross-section of the vorticity core. The value of the ratio 
b/r‘ is somewhat arbitrary in this formulation as long as it is small compared 
to unity. Since b(r’)i is a constant for the case of constant circulation, a value of 
b(r’)t = 0.001 was suggested by Acton (1980). This value is small enough such that 
the error term, O(b / r ’ ) ,  can be assumed negligible if r‘ is not near the centreline. In  
addition, it was shown by Acton (1980) that the resulting self-induced velocity of the 
ring remains relatively insensitive to the choice of this ratio over a relatively wide 
range of values. 

The flow within the pipe was simulated using a double row of 400 ring vortices 
located with equal axial spacing in a pipe length of 10 pipe diameters. The axial 
spacing of the rings is 0.05d (where d is the pipe diameter or the jet exit diameter) 
and the radial spacing between rows is 0.025d. It is assumed that the number of 
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vortices is large enough to simulate the infinitely long vortex tube of the pipe flow. 
The total number of ring elements in the pipe array is kept constant during the 
simulation with new elements introduced a t  the upstream starting point as vortex 
elements are released a t  the exit of the pipe. 

Once an array element leaves the pipe, it becomes part of the jet flow. The 
movement of the vortex is then based on the total induced velocity a t  its location. 
This velocity is induced in part, by all the other vortices in the pipe and those in the 
jet flow. In addition to the induced convection velocity, a self-induced velocity of the 
vortex element upon itself also contributes to the motion of the element. In  
mathematical form, the induced axial convection velocity for the i th  vortex at  the 
j t h  timestep is given by 

+ (c?K(a) iL.’(a)) I [ r i j + r k j  - r t j - r k j  

aa ’a i k j  u2 , ik j  u l , i k j  

(“1 , ik j  + u2,  i k j  ’ I1 
The induced radial convection velocity for the ith vortex a t  thejth timestep is given 
by 

where xij  = axial coordinate of i th vortex at j t h  timestep, 
rij = radial coordinate of ith vortex a t  j t h  timestep, 

“1, (k j  = ((xij - x k j ) 2  + ( r i j  - rk . j )2) ’ ,  

“2,ik.j  = ( ( x i j - x k j ) 2 +  ( ? - i j + r k j ) 2 ) ’ >  

( a 2 , i k j - u l , i k j i  

(a2, i k j  + al ,  i k j )  ’ 
%kj = 

N = total number of vortices in the system, 
k = Kth vortex ring in the system. 

The self-induced velocity of i th  vortex a t  j t h  timestep is given by 

B = b(r’);, 
= 0.001. 

The total velocity components for each vortex element are then, 

~ i j  = u , , i j + u , , i j ,  

‘u.. = v and a$ c, i j .  
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The new downstream and radial positions ((j+ 1)th timestep) of each vortex ring can 
now be obtained to second-order approximation by 

rij+l = rii + g(3uij - uii-l) At, (17) 

where At is the timestep size. 
As discussed by Chorin (1973) the high induced velocity which occurs when two 

small vortices are close together tends to invalidate the discrete vortex model. To 
remove this problem Chorin (1973) suggested the introduction of a ‘smoothing ’ core 
to the vortices. Within the smoothing core the induced velocity acting on another 
vortex is assumed to vary linearly with radial position from zero a t  the core centre 
to the convection velocity calculated from (1  1) and (12) a t  the edge of the smoothing 
core. This vortex with a smoothing core is called a ‘vortex blob’ by Chorin (1973). 
The smoothing core is equivalent to a small viscosity which allows the vorticity to 
diffuse. The effect of the smoothing core on the numerical simulation is not 
cumulative, and most importantly, the results are independent of the size of the core 
if it is relatively small. I n  this analysis, the smoothing core radius is defined as a 
constant fraction (one fifth) of the ring radius. This assumption follows the 
development by Acton (1980). 

The system is non-dimensionalized based on the following characteristic scales. All 
velocities are scaled by U,, the centreline velocity in the pipe. The dimensionless 
downstream and radial distances, X and R, are scaled with D, the pipe diameter, and 
time is thus scaled with T~ = D/U,. 

Since the pipe flow is assumed to be a vortex tube, the strength per unit length of 
this vortex tube, K,, is equal to U,. The strength of each vortex element in the pipe 
vortex array is therefore equal to, 

n 

where n = number of vortex rings in a pipe length of one diameter. The pipe vortex 
rings are driven downstream a t  a constant convection velocity Up. A value of Up 
equal to 0.5 U ,  was determined for this simulation. 

2.2. Modelling of the particle motion 
To predict the particle motion in the jet flow a Lagrangian approach is followed. The 
trajectory of each particle in the flow is predicted directly from the equation of 
motion. The basic assumptions in the particle motion analysis are: 

(i) All particles are non-deformeable solid spheres. 
(ii) The density of the particles, pp, is assumed large compared to the density of the 

(iii) Particleparticle interactions are neglected. 
(iv) The effect of the particles on the flow is neglected. 
(v) Virtual mass force, pressure gradient force and Basset force are all neglected. 

An order of magnitude study based upon the equation of motion given in Maxey & 
Riley (1983) reveals that  virtual mass and pressure gradient :re of the order of the 
density ratio, (pip,), and Basset force is of the order of (pip,)' if the drag force is of 
the order of 7;l. Since (pip,) is assumed to be 6 x for a typical gas-solid particle 
flow system in this study, the neglect of those forces is justified. It should be noted 

fluid, p.  
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that Basset force may become relatively important for y, > 0(102) as compared to 
the drag force which is the dominant force in this analysis. 

(vi) Other force fields including gravity are not included in this analysis. In  a 
separate numerical study which includes the gravity on the earth’s surface, the 
results show that for a Froude number UilgD,  of 25, which is estimated as a lower 
bound for an inviscid jet, the global radial dispersion of particles represented by 
D,(T, N )  as defined in (26) differs approximately by less than 1 Yo for y, = 0.05, 1.5 YO 
for y, = 1,4% for y, = 10 and 15% for y, = 100. In  this investigation, we are mainly 
interested in the relatively large radial dispersions of particles which correspond to 
small and intermediate y,, therefore gravity is neglected in all the calculations 
presented in this paper. 

The equation of motion for a particle can thus be written as 

d V  f 
-- - -( v- V,), 
dt 

where Vp is the instantaneous particle velocity, V is the instantaneous velocity of 
the fluid, f is the modifying factor for the Stokes drag and is the particle 
aerodynamic response time. The factor f is well represented for particle Reynolds 
numbers less than 1000 by f =  1+0.15 Re$ (Clift, Grace & Weber 1978), where 
Re, = I V- V,l d,/v with d, being the particle diameter and v the kinematic viscosity 
of the fluid. 

It should be noted a t  this point that the fluid viscosity is included in the particle 
motion equation but not in the governing flow equation. The reason behind this 
approach is that as a result of the drastic difference in the lengthscale between the 
two cases, particle motion is generally in the low-Reynolds-number category where 
the viscosity is a dominant factor. While for the jet flow, as discussed previously the 
motions have been shown experimentally to be relatively independent of viscosity 
and dominated by large scale structures. 

The equation of motion may be non-dimensionalized using the following relations. 

and 

This gives - dV* = -(V*- f G). dT ?A/?F 

In  addition several non-dimensional relations between the particle parameters and 
the flow parameters can also be defined : Y d  = d,/B, y, = pp/p and y, = These 
parameters can be used to relate the diameter ratio and the particle Reynolds 
number to the implied flow Reynolds number, Re = U ,  D / v .  This gives 

and Re, = IF- ydRe.  (24) 

The flow Reynolds number, Re, is involved due to the drag interaction between the 
particle and the fluid even though Re is not used directly in the flow simulation. 

It is noted that even though we have the following dimensionless groups specified 
in the particle dynamics, i.e. y7, yp, yd, Re, and Re, in view of (23) and (24), we decide 
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to choose y,, y, and Re as the independent parameters to be specified for each case 
in our calculations with the other parameters yd and Re,, directly related to 
them. 

The values of y,, yo and Re were selected based on the interests of practical 
applications. First, the timescale ratio, y,, was varied between 0.05 and 100. In 
an air jet with solid particles of diameter between 10 and 500 pm, is in the range 
of 6 x to 1.5 s. Typically rF is around 0.001 to 0.25 s. y;l in this analysis is fixed 
at  6 x which is a typical value for solid particle in an air flow. Since the flow 
numerical simulation is based on the assumption of large-Reynolds-number inviscid 
flow, the choice of Reynolds number should be consistent with the flow assumption. 
In this analysis, the Reynolds number is set at 200000 which also corresponds to 
most practical particle jet situations. 

It should be noted that according to (23) for a given Reynolds number, each y, 
corresponds to a specific yd because there is only one value for yp in our analysis. 
Therefore, the variation of y, represents the variation of particle size governed by the 
following rela tion, 

Y, 74. (25) 

3. Results and discussion 
3.1, Jet $ow 

The development of the starting free jet into a still environment is shown in figure 
3. Each cross represents the location of a vortex ring core for the top half of the jet. 
Plots of the instantaneous vortex patterns a t  dimensionless times from T = 6 to 
T = 17 are displayed. The large vortex cluster at  the right-hand side of the T = 8 plot 
is indicative of the initial mushroom- type vortex normally produced by starting 
jets. 

Two smaller clusters of vortices produced by unstable waves on the jet column can 
also be observed in the T = 8 plot upstream of the large starting vortex. Smaller 
clusters are labelled sequentially according to the order of formation in the figure for 
the purpose of keeping track of their interactions. These smaller clusters are 
produced by the jet a t  relatively regular intervals and as they proceed downstream 
they interact and subsequently merge with their nearest neighbours. To keep track 
of the interactions the combined vortex custers resulting from previous mergings are 
also indicated in the longer time plots. 

The resulting vortex clusters are found to contain both even and odd number of 
the original clusters. This observation is in agreement with experimental results 
discussed in review by Ho & Huerre (1984) which reports both even and odd types 
of merging interactions occurring for both forced and natural mixing layers. 

The current discrete vortex patterns shown in figure 3 are also in good agreement 
with those reported in Acton (1980) in which only discrete vortex patterns between 
T = 8 and T = 12 were shown. 

Instantaneous downstream velocity traces computed at several radial positions 
from x / D  = 2 are shown in figure 4. The first large-amplitude peak is produced by the 
arrival of the initial large-starting-vortex roll-up. Later large peaks can be associated 
with the arrival of one or more clusters of vortex elements. The vertical dash lines 
in R = 0.4 graph represent the instant that the centre of a vortex structure has just 
passed the X = 2 downstream location. The exact correspondence of the velocity 
peak and the arrival of the centre of a vortex structure at R = 0.4 was first noticed 
by Acton (1980). The number of peaks is not conserved between different radial 
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FIGURE 3. For caption see facing page. 
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FIGURE 4. Instantaneous axial velocities at X = 2. 

positions since the vortex cluster interactions displace the clusters in the radial 
direction, and therefore indications of the passage of each cluster may not 
substantially influence the instantaneous downstream velocity level a t  a particular 
radial position. This peak drop-out feature was noted by Acton (1980) and also 
occurs in laboratory experiments of free jets and mixing layers (Lau & Fisher 1975; 
Browand & Ho 1983). In  the plane mixing-layer experiments by Browand & Ho 
(1983), it  was shown that the fluctuating variation of the axial velocities as a function 
of time at a fixed downstream location exhibits a consistent trend. As the radial 
location is moved from the top edge of the mixing layer (low-speed side in Browand 
& Ho’s experiment) towards the bottom edge (high-speed side), both the magnitude 
and the frequency of the signals increase and the spikes get narrower and more 
frequent. This same trend is shared by the current numerical predictions. We have 
also compared the current predictions of the axial velocities with those predicted by 
Acton (1980). A direct quantitative comparison is not feasible because Acton (1980) 
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FIGURE 5. Normalized mean axial velocity profiles of the jet. 

did not show the vertical scale in the plot. After a close comparison with the number 
of peaks, the location of peaks, and relative sizes of the fluctuations, we may conclude 
that the current results shown in figure 4 resemble closely those of Acton (1980). 

Mean axial velocity profiles calculated from the numerical results for the 
downstream positions x / D  = 2 ,  3 and 4 are shown in figure 5 .  The numerical results 
were averaged from initial times after the large starting vortex had moved a 
substantial distance downstream of the selected position. The present results show 
that the mean axial velocity profiles are approximately similar in the initial region 
of the jet development and agree well with previous experimental results of Davies, 
Fisher & Barratt (1963) and Bradshaw, Ferriss & Johnson (1964) and the numerical 
results of Acton (1980). 

As seen in the above plots and comparisons, i t  may be concluded that the discrete 
vortex numerical simulation reasonably models the early development of the jet 
flow. 

3.2. Particle dispersion 

Particle dispersion by the jet flow is sampled in this study by introducing particles 
into the flow a t  the pipe exit (x = 0). For all the particle dispersion results presented 
in this paper, the particle initial velocity when it is introduced at the pipe exit is set 
to be equal to the local fluid velocity which is approximately uniform and is equal 
to U ,  a t  the pipe exit. The assumption that particles are in dynamic equilibrium with 
the flow is based on the experimental measurements of Yuu et al. (1978). I n  their 
experiments of a dust-laden round jet, they found that the particle velocities a t  the 
pipe exit were almost equal to the local fluid velocities for jet exit velocities ranging 
between 20 and 100 m/s and particle size of the order of 20 pm. 

I n  figure 6 ( a d )  particle distribution patterns a t  T = 17 are shown for various yT 
a t  a Re of 200000. Five streams of particles are introduced to  the flow a t  radial 
locations, R = r / D  of 0.41, 0.43, 0.45, 0.47 and 0.49. One particle is released at each 
location during each timestep. This corresponds to a particle releasing rate of 
1000 U , / P  particles per radial distance per second. Particle injection starts a t  T = 
2 and continues a t  a constant rate until T = 17. The reason for starting the particle 
injection at T = 2 instead of T = 0 is that we wanted to be sure that all the particles 
have plenty of opportunities to interact with the jet flow since particle-large scale 
structure interaction is the main subject of this study. The majority of the particles 
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FIGURE 6. Particle distribution pattern at  T = 17 for particles released between R = 0.41 and 
R = 0.49, (a)  7, = 0.05; ( b )  7, = 1 ; (c) 7, = 10; ( d )  7, = 100. 

injected before T = 2 will penetrate through the leading vortex and enter the still 
environment. There are a total of 1500 particles in each plot of figure 6 ( u 4 ) .  As 
mentioned previously, each y, corresponds to a specific yd according to the 
relationship of y, - y:. For y, of 0.05 as shown in figure 6 ( a ) ,  the particle size is small 
and its aerodynamic response time is much smaller than the flow characteristic time. 
In this case, the particles are closely following the flow streaklines as discussed 
earlier. It is clearly demonstrated in figure 6 ( a )  that the particle distribution pattern 
gives a good visualization of the jet vortex structures in the jet flow and particle 
dispersion is approximately equal to that of the fluid. 

As we increase the y7 to 1.0, the dispersion picture is quite different from that of 
y, = 0.05. As shown in figure 6 ( b ) ,  the particles may now be flung out of the large- 
vortex structures. In  general, particles move away from the core of large-vortex 
structures. It should be noted that the outermost stream of particles in figure 6 ( b )  is 
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FIGURE 7 .  Particle distribution pattern at  T = 17 for particles released between R = 0.21 and 
R = 0.29, (a )  y, = 0.05; ( b )  7, = 1 ;  (c) yr = 10; ( d )  7, = 100. 

due to an accumulation of those particles which get flung out to the stagnant 
ambient region by the leading-vortex structure. These particles simply stay there 
because there is negligible fluid velocity outside the mixing layer. Therefore the 
radial dispersion of particles for y, = 1.0 is larger than that of y, = 0.05. This 
numerical simulation also verifies Yule's (1980) experimental observation that 
relatively larger droplets with their smaller drag/inertia ratios are seen to leave these 
eddies and penetrate the outer region. 

For even higher y,, particles become less influenced by the flow structures as shown 
in figures 6 ( c )  and 6 ( d )  where at  y, = 10, the radial dispersion is much reduced as 
compared with that of y, = 1 if we neglect the outer stream of particles flung up by 
the leading vortex. Only very limited dispersion is seen in figure 6 ( d )  for y, = 100. 

In practical applications, particles are usually present a t  all radial locations when 
they exit from the pipe. Therefore we also plotted the particle distribution patterns 
in figure 7 ( a d )  with identical conditions to those in figure 6 (ad) except the particles 
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RiO 
0.21-0.29 
0.214.29 
0.214.29 
0.214.29 
0.414.49 
0.414.49 
0.414.49 
0.414.49 

Y T  

0.05 
1 .o 

10 
100 

0.05 
1 

10 
100 

0 , ( 1 7 ,  1500) y,(17, 1500) 

0.01266 1.059 
0.01656 1.386 
0.01506 1.260 
0.00205 0.172 
0.007 17 1.032 
0.01257 1.809 
0.016 18 2.328 
0.003 95 0.568 

TABLE 1 .  Quantitative dispersion results for a starting jet 

R,O 
0.214.29 
0.214.29 
0.214.29 
0.214.29 
0.414.49 
0.414.49 
0.414.49 
0.414.49 

Y, 
0.005 
1 

10 
100 

0.05 
1 

10 
100 

0,(17, 1000) 

0.01350 
0.00865 
0.00468 
0.001 13 
0.00653 
0.01 120 
0.007 33 
0.00209 

Y D ( 1 7 ,  1000) 
1.406 
0.901 
0.487 
0.118 
1.096 
1.879 
1.230 
0.351 

TABLE 2. Quantitative dispersion results for an established jet 

are introduced at R = 0.21, 0.23, 0.25, 0.27 and 0.29. For starting radial locations 
which are closer to the centreline, the particles will interact initially with the core 
flow of the jet which carries more momentum in the axial direction instead of the 
mixing-layer flow. This means that particles entering the jet a t  locations closer to the 
centreline will have higher axial momentum and therefore will in general experience 
less lateral displacement. In  figure 7 ( a d ) ,  we still observe the same general trends 
of particle dispersion a t  different y7 as those in figure 6 ( a d )  but generally with less 
radial displacement. 

To quantify the results concerning the particle lateral dispersion, the radial global 
dispersion function a t  time T is defined as the following, 

where N is the total number of particles in the system at time T ,  Ri(T) is the 
dimensionless radial location of the particle i a t  time T and Ri, is the radial location 
of particle i a t  the jet exit. 

To quantify the fluid dispersion of the jet flow, tagged fluid particles are 
introduced to the jet flow in a format identical to those of actual particles as 
described above. The global dispersion function for fluid particles is similarly defined 
and is given as DL(T, N ) .  Then we define the ratio 

yD(T ,  N )  represents the ratio of particle dispersion to the fluid particle dispersion 
under identical conditions. y D ( T ,  N )  may be considered to correspond reasonably 
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Y7 y,(17, 1000) Sc-' (Yuu et al. 1978) 

0.05 1.406 1.32 
1 0.901 0.89 

10 0.487 0.54 
100 0.118 0.11 

TABLE 3. Comparison of current numerical predictions with experimental results of 
Yuu et al. (1978) 

closely to the reciprocal of turbulent Schmidt number, Sc = em/c,, where ern and E ,  

are eddy diffusivity for momentum and mass diffusion respectively. 
Tables 1 and 2 summarize the quantitative dispersion results based on the global 

particle dispersion function D, and the associated particle to fluid dispersion ratio, 
yD for the free jet. In  table 1 ,  N is equal to 1500 which includes all particles in the 
simulation a t  T = 17 (particles released between T = 2 and T = 17). In table 2, N is 
equal to 1000 which includes only the particles released between T = 7 and T = 17. 
This table does not include the particles that are released between T = 2 and T = 7 .  
It is observed that particles released between T = 2 and T = 7 are usually ingested 
by the leading large-vortex structure and therefore get dispersed dominantly by this 
leading large-vortex structure. In most of the industrial applications or experimental 
measurements, the jets have already reached a steady-state condition and the 
leading vortex structure is not present. Therefore results in table 1 are more 
representative of a starting jet while those of table 2 are thought to closely 
correspond to  particle dispersion in an established jet. The particle release regions are 
specified in the tables, i.e. Ri, = 0.21-0.29 in the core region and Ri, = 0 .414 .49  near 
the edge of the jet. 

It is seen that the results shown in tables 1 and 2 are consistent with our postulated 
physical concept that  a t  some intermediate time ratios, particles may be dispersed 
beyond the fluid dispersion boundary. In the large-scale structure of a turbulent free 
jet, particle lateral dispersion seems to be most efficient for y, being of the order of 
unity for particles exiting near the pipe wall because they interact primarily with the 
mixing layer structures. For particles released in the middle portion between the 
centreline and the pipe wall, only those particles with much smaller y, are dispersed 
further than that of the fluid. This is because only particles with larger drag to 
momentum ratio (corresponding to smaller y,) are more likely to be captured by the 
large-scale vortex structures since the particles released in the middle portion 
between the centreline and the pipe wall usually encounter the lower outer edge of 
the mixing layer where the entrainment power of the fluid is weaker. It is plausible 
to assume that large-scale vortex structures in turbulent mixing layers are capable 
of dispersing particles of some intermediate y, beyond the boundary of fluid 
dispersion. The experimental results of Yuu et al. (1978) on the turbulent Schmidt 
number are compared with our predictions in table 3. The result of Yuu et al. (1978) 
is the only experimental work found in the literature that is comparable to our 
numerical model, even though some differences still exist such as those listed as 
simplifying assumptions in the numerical model. 

In table 3 a comparison is made between the experimental results of Yuu et al. 
(1978) and present calculations of yD(17, 1000) for particles released a t  r /D = 
0.21-0.29. The reason for comparing only with particles introduced in the middle 
region between centreline and the pipe wall is explained as follows. In the 
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FIGURE 8. Variation of D , ( T , N )  as a function of dimensionless time for an established jet, 
(a )  particles released between R = 0.41 and R = 0.49; ( b )  particles released between R = 0.21 and 
R = 0.29. 

experiment, particles are distributed uniformly across the cross-section a t  the pipe 
exit, which may be more closely simulated by the particles issued in the middle region 
in the numerical simulation. It may be argued that particles exiting near the pipe 
wall will interact more with the mixing layer while the particles leaving the pipe near 
the centreline will be influenced basically by the core flow. Based on table 3, it  is seen 
that the current numerical simulations predict the correct trend and the maximum 
deviation is 17 %. 

Another interesting feature is the variation of D,(T, N )  as a function of time. In 
figures 8 ( a )  and 8 ( 6 ) ,  D,(T, N )  us. T for an established jet is plotted for various y, and 
two different particle starting radial locations. In  general more variations are noted 
for smaller y, because their dispersion is more closely influenced by the largc-scale 
structures. As y, gets larger, the curves become more linear. They all seem to reach 
a constant slope after a certain time and the larger the y,, the quicker it reaches its 
steady-state slope. 

It is also informative to show typical radial particle flux distributions a t  a 
downstream location, i.e. x / D  = 3. At this downstream counting station, a vertical 
arrsy of windows is set up with each window occupying a radial distance of A r l l j  = 

0.1. Figure 9(a- f )  shows the total number of particles that have passed through the 
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windows up to a specific time as indicated in the figure. In other words each symbol 
represents the accumulated number of particles that have moved through this 
window between T = 2 and T = 9, 12 or 15. The lines connecting the symbols are 
formed based on the spline second-order curve-fitting technique. In  figure 9 (a-f ), all 
the particles are introduced to the flow a t  the pipe exit ( x /D  = 0) and at five radial 
locations of 0.41, 0.43, 0.55, 0.47 and 0.49. The injection of particles starts at  T = 
2 and continues a t  a constant rate of a total of 1000 U , / D 2  particles per metre of 
radial distance per second in five streams. It is noted that the accumulated radial 
particle flux plots show the effect of a starting jet for small times. As time becomes 
large, the curves become more representative of an established jet. 

Figure 9(a) shows the accumulated particle distribution curves for tagged fluid 
particles in order to examine the fluid dispersion. The curves are all Gaussian-like 
with peaks aligned with the centre of the source and a slight asymmetry towards the 
outside of the jet. For y, = 0.05 the basic slope of the distribution curve is similar to 
that of the fluid but they are flatter. Double peaks are found for y, = 1 .  This is mainly 
due to the condition that particles are flung out of the centres of those large-scale 
vortices. It also explains why the two peaks are separated radially from the source. 
For all other cases, the single peak is well aligned with the source. For y, = 10 and 
100, all the curves are Gaussian with peaks corresponding to the particle source. In 
figure 9 ( f ) ,  all the T = 12 curves are plotted together for a radial dispersion 
comparison. The accumulated particle distribution profiles are similar in magnitude 
for y, 3 O(1).  

In order to quantify the results shown in figure 9 (a-f ), the dispersion function at 
an axial location is defined as, 

J 

D A ( X ,  T )  = c ( M ( X ,  T , j )  ( R j ( X )  -0.45)2)t/M,, (28) 

M ,  = c J f ( X , T , j ) ,  (29) 

j=1 
J 

j=1 

where M ( X ,  T , j )  is the total number of particles that go through window j between 
T = 2 and T a t  axial location X. R,(X) is the radial location of the centre of window 
j at X .  J is the total number of windows a t  X .  
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In  figure 10, D,(X,T = 1 5 ) / D i ( X , T  = 15), where D f , ( X , T )  is defined for tagged 
fluid particles, is plotted a t  three axial locations of X = 2, 3 and 4 for particles 
released between T = 2 and T = 15. Again, we are trying to see the relative particle 
dispersion a t  different downstream locations as compared with that of the fluid. The 
postulated physical concept of more particle lateral dispersion for y, = O(1) is 
verified for different axial locations. Increased levels of particle dispersion are also 
present for increased downstream locations. This may be due to the fact that as 
particles travel downstream they gradually lose their axial momentum gained at the 
pipe exit such that they are more susceptible to the influence of the large-scale 
structures. 

4. Conclusion 
Numerical simulations of the particle dispersion by an axisymmetric free jet are 

presented. The jet flow is modelled through a discrete vortex method of vortex rings. 
Qualitatively, the discrete vortex simulations compare favourably with available 
experimental flow results concerning global flow patterns, vortex interactions and 
the pairing process. The predicted mean velocities and instantaneous velocity 
fluctuations are comparable with experimental quantities. The current flow 
predictions also agree well with previous numerical results by the same discrete 
vortex method. 

For the particle dispersion simulations, it was found that the turbulent mixing 
layer is capable of dispersing particles with y, of the order of unity beyond the 
boundary of the fluid dispersion if the particles enter the jet flow from near the pipe 
wall a t  the jet exit. For particles entering into the jet flow in the core region, higher 
particle dispersion than the fluid is calculated only for much smaller y,. The 
calculated ratios of particle dispersion to fluid dispersion for particles released in the 
core region compare favourably with limited results of experimental measurements. 
The global particle dispersion function, D,(T ,N)  seems to vary with time linearly 
after some initial development. More high-amplitude variation af D,(T, N )  with time 
is predicted for smaller y, because the dispersion of smaller particles is strongly 
influenced by the intermittency of the mixing layer. For accumulated radial flux 
distribution a t  a downstream location, similar dispersion trends to those of the global 
dispersion function exist. Using the fluid dispersion as a reference, particles in the 
range of small yr  are dispersed equally to the fluid, particles with large y, are 
dispersed less than that of the fluid. Particles with intermediate y, are dispersed more 
than the fluid particles. The results of this simulation indicate that there seems to 
exist a specific range of y, at which optimal dispersion of particles in the turbulent 
mixing layer of an axisymmetric free jet may be achieved. 
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